Geologists, Geophysicists, Petrophysicists, Engineers and Managers who wish to develop a better understanding of the factors that control reservoir distribution, quality, connectivity and compartmentalization in deepwater systems. The course assumes no prior knowledge and will provide participants with a solid foundation that they can translate into their daily tasks during exploration and development.
I. Introduction to deepwater oil and gas exploration, global distribution of prospective deepwater areas, shelf morphology, mobile substrate basins, the concept of confinement, and sequence stratigraphy of deepwater petroleum systems: effects of relative sea-level fall on sediment gravity flows, canyon incision, longshore drift capture, discussion and identification of key surfaces such as the Maximum Flooding Surface and Sequence Boundary and their identification in seismic, well-log and core data, autocyclic vs allocyclic changes and their controls on reservoir distribution and architecture, predictive stratigraphic models of Mike Gardner (Build-Cut-Fill and Spill and Adjustment-Initiation-Growth-Retreat).
II. Exercises on introductory sequence analysis on seismic and well-log data
I. Process sedimentology of deepwater systems: fluid gravity vs sediment gravity flows, hypopycnites, hyperpycnites, debrites, contourites (bottom-current deposits), turbidites, hybrid beds, linked debrites, slurry flows, traction vs suspension bedforms, liquefaction and fluidization, mass transport complexes, slides vs slumps and the effects of processes on reservoir quality. During this session you will learn how to identify deepwater processes by looking at core data and how to use the Kneller-Branney matrix to predict the occurrence of reservoir quality sands in your basin.
II.Exercise on the identification of sedimentary processes and products on deepwater core
I. Deepwater Channel storeys, elements, complexes and complex sets (hierarchy), fill, architecture, evolution, channel-axis vs channel-margin facies, recognition in outcrop, core, well-logs and seismic, assigning risk to drilling deepwater channels, confined vs poorly confined and organized vs disorganized channel belts and the preservation of reservoir quality sands, processes of flow-stripping, elutriation and flow-filtering, differentiating external vs internal levees in deepwater channel levee systems.
II. Exercise on identification of sedimentary structures using borehole image logs and interpreting depositional environments in FMI logs.
III. Exercises on seismic expression of deepwater channels
I. Deepwater lobe beds, lobe elements, lobes, lobe complexes and fans (hierarchy), axis vs fringe facies, architecture, evolution, recognition in outcrop, core, well-logs and seismic. Mud-rich, Sand-rich and Mixed-systems and their characteristics, flow efficiency and its relationship to basin morphology, compensation stacking, changes in reservoir thickness and quality as a consequence of lateral and down-dip facies change.
II. Exercises on seismic expression of lobes, fans, channelized lobes and mass transport complexes.
I. How to approach deepwater reservoirs from exploration to development, systematic approach in seismic interpretation of deepwater sedimentary successions, sequence analysis, seismic facies analysis, classification of your deepwater system, selecting modern and ancient analogs, seeking expertise, steps in creating geomodels: creation of facies logs, deriving geometric data such as channel thickness and width, sinuosity, and choosing the best algorithm for modeling deepwater architectural elements.
II. Exercises on creating facies logs and setting up data for geomodels.